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Abstract
We critically examine the quantum-mechanical modelling of a measurement
process using the Stern–Gerlach (SG) setup in the most general context, probing
in particular for nonideal situations, the subtleties involved in the connection
between the notion of ‘distinguishability’ of apparatus states defined in terms of
the inner product and the spatial separation among the wave packets emerging
from the SG setup. The quantitative studies highlighting some of the unexplored
features of this relationship are presented in terms of an appropriately defined
measure for the spatial separation between the emerging wave packets. It is
also indicated how the effects arising from such departures from the idealness
can be empirically tested for different values of the relevant parameters.

PACS number: 03.65.Ta

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is an inéluctable feature of the quantum measurement theory that any measurement described
by the quantum mechanics entails an interaction between the measuring apparatus and the
observed system resulting in the state of the measured system to be necessarily entangled with
the state of the observing apparatus. The quantum-mechanical modelling for the measurement
process was first introduced by von Neumann [1], where the measuring device was treated
quantum mechanically; this is in contrast to Bohr’s dictum [2] that a measuring device must
be treated classically.
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The essential theory of the quantum measurement is as follows. Let the initial state of a
system be given by

φ0 = aχ+ + bχ− (1)

where χ+ and χ− are the mutually orthogonal eigenstates of a measured dynamical variable.
The initial combined state of the observed system and the apparatus is �i = φ0ψ0, where
ψ0 is the initial apparatus state which is usually sharply peaked around the centre of mass
of position coordinates. After the interaction with the measuring device, the final state is an
entangled state which can be written as

�f = aψ+ ⊗ χ+ + bψ− ⊗ χ− (2)

where ψ+ and ψ− are the apparatus states after the interaction. Thus at the end of a typical
measurement interaction, there is a one-to-one correspondence between the system and the
apparatus states [3].

Usually in any measurement situation the apparatus states are ultimately localized in
position space. Now, for an ‘ideal measurement’, it is required that the apparatus states ψ+ and
ψ− need to be mutually orthogonal in the configuration space and macroscopically distinct in
the position space. Macroscopic distinguishability between apparatus states is a key notion
in the quantum measurement theory which calls for careful scrutiny of its various subtleties
in different experimental contexts [4].

In the context of the Stern–Gerlach (SG) setup [5] employed for measuring the spin of
a quantum particle, considered to be an archetypal example of the quantum measurement,
the apparatus states are represented by the spatial wavefunctions of the particles whose spins
are inferred from the observed positions. While the orthogonality between the states in the
configuration space does not necessarily imply the distinguishability in the position space,
here in this paper we critically examine the subtleties involved in the connection between the
notion of ‘distinguishability’ of apparatus states defined in terms of the configuration space
inner product and the position space separability of the wave packets emerging from the SG
magnet. In particular, we show that in any given setup the position space overlap between
the emerging wave packets, defined in terms of a suitable measure, saturates to a definite
time-independent value in the asymptotic limit, corresponding to any given value of the inner
product, zero or otherwise. The way this saturation value varies with the relevant parameters
is studied in terms of numerical estimates. Using this approach we also make a quantitative
study of the departure from the idealness that can be tested experimentally.

As mentioned earlier, usually all experiments ultimately reduce to a macroscopic detection
of position (pointer reading, flash of light on a screen, etc). The SG experiment exhibits perfect
correlation between two degrees of freedom of a single system in terms of position and spin
so that the value of position definitely allows us to infer the value of spin. In this connection
we may note that the SG interferometry has been an active area of research over the past
several decades. It has attracted attention of a number of well-known contributors like Bohm
[6], followed by Wigner’s work [7] on the problem of reconstructing the initial state and its
relevance to the issue of wavefunction collapse in the quantum measurement. Subsequently,
Englert, Schwinger and Scully [8] have analysed this issue in much depth (the well-known
Humty-Dumpty problem) in a series of three papers. It has also been experimentally studied
[9] how the extracted phase information from the SG interferometry experiment determines
the transfer of coherence of spin to the external degree of freedom (position) giving rise to
the position-spin entanglement. More investigation along this direction has been pursued by
Oliveira and Caldeira [10] by using SQUID as the source of the magnetic field. Also, the
usefulness of the SG experiment in probing more critically the subtleties of the relationship
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between which path detection and interference has been recently revisited [11] in the context
of the works by Dürr [12] and Knight [13].

Usually, the ‘ideal limit’ of the SG experiment is considered to be the one in which the inner
product between the emerging wavefunctions is zero and the position space overlap between
the emerging wave packets is negligibly small. In this paper we explore facets of deviations
from this ideal limit; in particular, the interplay between the inner product and the position
space overlap between the wave packets. When the wave packets from the SG magnet get
separated and move along opposite directions, their position space overlap changes with time
depending upon whether the separation of the wave packets is compared to or larger/smaller
than the free broadening. What we study in detail are the quantitative aspects of the way
position space overlap between the wave packets reaches a time-independent saturated value
co-related with the inner product of the emerging wavefunctions for any given values of the
relevant parameters of the SG setup (such as the magnetic field gradient, the interaction time
and the initial width of the incident wave packet).

For the purpose of this paper the kind of situations we focus on may be categorized as
the following two types: (a) formally ideal situation where the wavefunctions ψ+ and ψ− are
orthogonal in configuration space (b) operationally ideal situation where the overlap between
the associated wave packets of ψ+ and ψ− in the position space is negligibly small. In terms
of these categorizations the usually defined ‘ideal limit’ defined of the SG experiment is the
situation which is both formally and operationally ideal and nonideality arises whenever the
required condition in either of these two situations is violated. By defining an appropriate
measure for quantifying the position space separability between the wave packets emerging
from the SG magnet, our scheme quantifies the departure from the usual ‘ideal limit’ that can
be experimentally tested for nonideal situations with various ranges of values of the relevant
parameters.

The discussions regarding the nonideality of the SG experiment in the literature are
mostly related to the practical problem involved in ensuring the required inhomogeneity of
the magnetic field [14, 15]. However, the nonideality probed here in quantitative terms arising
due to a non-negligible overlap between the emergent wave packets in the position space
not only pertains to the aspects not much explored but can also in practice be of significant
interest in estimating the error in the inference of the value of the spin of a particle from its
position on the screen placed even at large distances. Thus, our study goes through a route
which is completely different from the previous authors [14, 15] who have studied the issue of
nonidealness in the context of how to idealize the experiment. On the other hand, our present
scheme is concerned with predicting verifiable outcomes in the different types of nonideal
situations that we will describe in detail.

The plan of this paper is as follows. In section 2, we present a comprehensive analysis of
the measurement of the spin of spin-1/2 particles using the SG setup, which has not received
enough in-depth attention in the literature. In this process, we define precisely the above-
mentioned notions of formal and operational idealness. This sets the stage for formulating our
scheme for quantifying the departures from idealness which we study in section 3. We identify
two distinct categories of operational and formal nonidealness. The actual computations of
the measures of nonidealness are done for a range of relevant experimental parameter values
in section 4. We provide illustrative numerical estimates showing differences of the outcomes
between the ideal and nonideal situations through which we demonstrate the lack of universal
correspondence between orthogonality in the configuration space and distinguishability in
the position space in the SG experiment. Subsequently, we specifically illustrate the
relationship between the notion of ‘distinguishability’ of apparatus states defined in terms
of the inner product and the spatial separation between the wave packets emerging from the



13978 D Home et al

Source

Slit Magnet

Screen

y

z

x

Figure 1. A schematic Stern–Gerlach setup.

SG magnet in terms of the relevant parameters. Finally, in section 5 we present our concluding
remarks.

2. Quantum-mechanical treatment of SG experiment

The quantum-mechanical treatment of the SG experiment has been discussed by Bohm [6],
followed by others [16]. In an interesting work, Gondran and Gondran [17] have analyzed
the SG experiment using causal trajectories in the Bohmian approach. However, none of the
above studies have attempted to investigate nonidealness from the present perspective. The
usual description of the ideal SG experiment (figure 1) is as follows. A beam of x-polarized
spin-1/2 neutral particles, say neutrons, with a finite magnetic moment is represented by the
total wavefunction �(x, t = 0) = ψ0(x)χ(t = 0) = ψ0(x) ⊗ (α|↑〉z + β|↓〉z). The spin part
χ(t = 0) is the state of the system to be observed, where |↑〉z and |↓〉z are the eigenstates of
σz and α and β satisfy the relation |α|2 + |β|2 = 1. The spatial part ψ0(x) represents the initial
state of the measuring device and is associated with a Gaussian wave packet which is initially
peaked at the entry point (x = 0) of the SG magnet and starts moving along the positive ŷ-axis
with velocity vy through a transversely directed (along the positive ẑ-axis) inhomogeneous
magnetic field (localized between y = 0 and y = d) with respect to the direction of the beam.
Within the SG magnet, in addition to the +̂y-axis motion the particles gain velocity with
magnitude vz along the ẑ-axis due to the interaction of their spins with the inhomogeneous
magnetic field during the time τ .

The time-evolved total wavefunction at time τ , which is an entangled state between
position and spin is then given by �(x, τ ) = αψ+(x, τ ) ⊗ |↑〉z + βψ−(x, τ ) ⊗ |↓〉z. At the
exit point (y = d) of the SG magnet, the particles deflect differently in a way that particles
with eigenstate |↑〉z associated with the wave packet ψ+(x, τ ) move freely along the direction
n̂+ = vyĵ +vẑk and the particles with eigenstate |↓〉z associated with the wave packet ψ−(x, τ )

move freely along the direction n̂− = vyĵ − vẑk. Our first task is to evaluate the explicit
expressions for ψ+(x, t) and ψ−(x, t) corresponding to |↑〉z and |↓〉z after emerging from the
exit point (y = d) of the SG magnet. To this end, we provide a fully quantum-mechanical
description of the theory of the SG experiment here.

We start our calculation by taking the initial total wavefunction of the particle at t = 0 to
be

�(x, t = 0) = ψ0(x)χ(t = 0) = ψ0(x) ⊗ (α|↑〉z + β|↓〉z) (3)

where χ(t = 0) = α|↑〉z + β|↓〉z is the initial spin state with |α|2 + |β|2 = 1 and |↑〉z, |↓〉z are
the eigenstates of σz, and ψ0(x) is the initial spatial part of the total wavefunction represented
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by a Gaussian wave packet which is peaked at the entry point (x = 0) of the SG magnet at
t = 0 given by

ψ0(x) = 1(
2πσ 2

0

)3/4 exp

(
− x2

4σ 2
0

+ ik.x
)

, (4)

where σ0 is the initial width of the wave packet. The wave packet moves along the positive
ŷ-axis with the initial group velocity vy and the wave number ky = mvy

h̄
.

The interaction Hamiltonian is Hint = µσ.B where µ is the magnetic moment of the
neutron, B is the inhomogeneous magnetic field and σ is the Pauli spin matrices vector. Then
the time-evolved total wavefunction at t = τ after the interaction of spins with the SG magnetic
field is given by

�(x, t = τ) = exp

(
− iHτ

h̄

)
�(x, t = 0)

= αψ+(x, τ ) ⊗ |↑〉z + βψ−(x, τ ) ⊗ |↓〉z (5)

where ψ+(x, τ ) and ψ−(x, τ ) are the two components of the spinor ψ = (ψ+
ψ−

)
which satisfies

the Pauli equation. We take the inhomogeneous magnetic field as B = (−bx, 0, B0 + bz)

satisfying the Maxwell equation ∇.B = 0, instead of the field chosen in the original SG paper
[5] which was not divergence free. The two-component Pauli equation can then be written as
two coupled equations for ψ+ and ψ−, given by

ih̄α
∂ψ+

∂t
= −α

h̄2

2m
∇2ψ+ + αµ(B0 + bz)ψ+ − βµbxψ−

ih̄β
∂ψ−
∂t

= −β
h̄2

2m
∇2ψ− + αµbxψ+ − βµ(B0 + bz)ψ−.

(6)

Due to the realistic magnetic field, there exists an equal force transverse to the ẑ-axis,
and a continuous distribution is expected instead of the usual line distribution. But the time
average of the transverse force along the x̂-axis is zero due to the rapid precession of the
magnetic moment around the field direction [14] provided that B0 is much greater than the
degree of inhomogeneity b. By using coherent internal states, it has been argued [15] that
the exact condition to neglect the tranverse component is B0 � bσ0 where σ0 is the width
of the initial wave packet. Using the above condition the coupling between the above two
equations is removed and one obtains the following decoupled equations given by:

ih̄
∂ψ+

∂t
= − h̄2

2m
∇2ψ+ + µ(B0 + bz)ψ+

ih̄
∂ψ−
∂t

= − h̄2

2m
∇2ψ− − µ(B0 + bz)ψ−.

(7)

The solutions of the above equations can be written as

ψ+(x; τ) = 1(
2πs2

τ

) 3
4

exp

[
−

{
x2 + (y − vyτ )2 +

(
z − vzτ

2

)2

4σ0sτ

}]

× exp
[
i
{
−�+ +

(
y − vyτ

2

)
ky + kzz

}]
(8)

ψ−(x; τ) = 1(
2πs2

τ

) 3
4

exp

[
−

{
x2 + (y − vyτ )2 +

(
z + vzτ

2

)2

4σ0sτ

}]

× exp
[
i
{
−�− +

(
y − vyτ

2

)
ky − kzz

}]
,
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where �± = ±µB0τ

h̄
+ m2v2

z τ
2

6h̄2 , vz = µbτ

m
, kz = mvz

h̄
and sτ = σ0

(
1 + ih̄τ

2mσ 2
0

)
. The recent paper by

Gondran and Gondran [17] obtains similar solutions for the two decoupled equations. They
however ignore the spreading of the wave packet by taking |sτ | = σ0. Moreover, the emphasis
of their paper is on the description of the experiment through causal trajectories obtained by
using the Bohm model and, very importantly, unlike the discussions in this paper, they do not
attempt to analyse the nonidealness of the SG measurement.

Here ψ+(x, τ ) and ψ−(x, τ ) representing the wavefunctions at the exit point (y = d)

of the SG magnet at t = τ correspond to |↑〉z and |↓〉z respectively, with average momenta
〈p̂〉↑ and 〈p̂〉↓, where 〈p̂〉↑↓ = (0,mvy,±µbτ). Within the magnetic field the particles
gain the same magnitude of momentum µbτ , but the directions are such that the particles
with eigenstates |↑〉z and |↓〉z get the drift along the positive ẑ-axis and the negative ẑ-axis
respectively, while the ŷ-axis momenta remain unchanged. Hence after emerging from the SG
magnet the particles represented by the components ψ+(x, τ ) and ψ−(x, τ ) move freely along
the respective directions n̂+ = vyĵ + µbτ

m
k̂ and n̂− = vyĵ − µbτ

m
k̂ with the same group velocity

v =
√

v2
y +

(
µbτ

m

)2
fixed by the parameters of the SG setup and the initial velocity (vy) of the

peak of the wave packet.
Now, the inner product I between the ψ+(x, τ ) and ψ−(x, τ ) components is given by

I =
∫ +∞

−∞
ψ∗

+(x, τ )ψ−(x, τ ) d3x (9)

and is negligibly small for the formally ideal situation. This inner product is preserved for the
subsequent time evolution during which the freely evolving wavefunctions at any time t (here
t = 0 is taken from t = τ ) after emerging from the SG setup are given by

ψ+(x, t) = 1(
2πs2

t+τ

)3/4 exp

[
−

{
x2 + (y − vy(τ + t))2 +

(
z − vzτ

2 − vzt
)2

4σ0st+τ

}]

× exp

[
i

{
−�+ + ky

(
y − vy(τ + t)

2

)
+ kz

(
z − vzt

2

)}]
(10)

ψ−(x, t) = 1(
2πs2

t+τ

)3/4 exp

[
−

{
x2 + (y − vy(τ + t))2 +

(
z + vzτ

2 + vzt
)2

4σ0st+τ

}]

× exp

[
i

{
−�− + ky

(
y − vz(τ + t)

2

)
− kz

(
z +

vzt

2

)}]
,

where st+τ = σ0
(
1 + ih̄(t+τ)

2mσ 2
0

)
. Note that the preservation of the inner product I =

〈ψ(x, t)|ψ(x, t)〉 = 〈ψ(x, τ )|ψ(x, τ )〉 for any value of t follows from the following feature.
Since both the wavefunctions ψ+(x, t) and ψ−(x, t) freely evolve with time under the same
Hamiltonian they are subjected to the same unitary operation. But the position space overlap
between the two wave packets moving in opposite directions (with equal and opposite momenta
of their peaks) changes with time (this aspect will be dealt with in the following section). Here
the key relevant point is that the inner product is, in general, a complex quantity defined in
the configuration space while the position space overlap is defined in the three-dimensional
position space which is a real quantity.

Let us now discuss the outcomes of this ideal situation from the formal and operational
viewpoints. In a formally ideal measurement I ≈ 0. After emerging from the exit point of
the SG magnet the probabilities of finding particles with up and down spins in the ẑ-axis,
i.e., |↑〉z and |↓〉z, are P i

↑ = |α|2 and P i
↓ = |β|2, respectively. In order to discriminate the

above situation from the case of an operationally ideal situation, we define the operational
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idealness by the condition that the probabilities of finding particles within the positive zy-plane
(upper plane) and negative zy-plane (lower plane) are P i

+ = |α|2 and P i
− = |β|2, respectively.

Combining these two statements coming from the formal and the operational viewpoints, we
can say that when a measurement is both formally and operationally ideal then P i

+ = P i
↑

and P i
− = P i

↓, i.e., the probability of finding |↑〉z particles equals the probability of finding
particles in the upper plane, and similarly for |↓〉z particles and those in the lower plane. In
other words, in a perfectly (formally as well as operationally) ideal SG experiment, all |↑〉z
particles can be found in the upper plane, whereas all |↓〉z particles can be found in the lower
plane.

3. The nonideal SG experiment

In the context of the SG experiment the above-discussed ideal situation is a very special
case because, in general, orthogonality between ψ+(x, τ ) and ψ−(x, τ ) crucially depends on
the delicate choices of some relevant parameters involved in the SG setup. Substituting the
expressions for ψ+(x, τ ) and ψ−(x, τ ) given by equation (8) into equation (9), one obtains the
actual expression for the inner product |I | (the inner product may contain a global phase and
hence we take the modulus of the inner product) to be

|I | = exp

{
−µ2b2τ 4

8m2σ 2
0

− 2µ2b2τ 2σ 2
0

h̄2

}
(11)

which will be preserved after subsequent free time evolution. It is seen from equation (11)
that |I | depends on the parameters b, τ , m and σ0 and for sufficiently large values of b and
τ with fixed σ0 and m, one has |I | ≈ 0, i.e., ψ+(x, t) and ψ−(x, t) are orthogonal for all
practical purposes. But in general, as we will see in the following section, there could be
various choices of the relevant parameters for which |I | > 0.

Our purpose here is how to explore the nonideal situation from the viewpoints of both
formal orthogonality and operational distinguishability and investigate the connection between
the two by quantifying the departures from the ideal measurement outcomes. The question
arises as to how one can predict the outcomes of this nonideal experiment. It is well known
that nonorthogonal states can not be distinguished perfectly, even if they are known. There
are various schemes [18] for optimum discrimination among the states by adopting different
strategies. Usually all experiments ultimately reduce to the measurement of position, and
here in this work we are confined to the operational discrimination between the states in the
position space.

From the operational viewpoint, the above question may be posed as follows: what is the
probability of finding particles with |↑〉z (or |↓〉z) in the lower plane (or upper plane) when |I |
is not negligibly small? In order to find an answer to this, we define an error integral E(t), the
key ingredient in our scheme which gives a quantitative prediction for this nonideal situation.
The error integral E(t) is a function of time and is given by

E(t) =
∫ +∞

x=−∞

∫ +∞

y=−∞

∫ +∞

z=0
|ψ−(x, t)|2 dx dy dz

=
∫ +∞

x=−∞

∫ +∞

y=−∞

∫ 0

z=−∞
|ψ+(x, t)|2 dx dy dz, (12)

where E(t) multiplied by |α|2 (or |β|2) gives the probability of finding |↓〉z (or |↑〉z) particles
within the upper plane (or lower plane) at time t. Note that the error integral E(t) is a real
quantity unlike the inner product, and it changes with time as the two wave packets |ψ+(x, t)|2
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Figure 2. The variation of E(t) with time (in seconds) is shown for three different values of b, i.e.,
b = 5 × 104 G cm−1, b = 5.5 × 104 G cm−1 and b = 6 × 104 G cm−1 with τ = 5 × 10−4 s and
σ0 = 10−5 cm while Es ≈ 0 and |I | ≈ 0 [case (i)].

and |ψ−(x, t)|2 emerging from the SG setup move along opposite directions with equal and
opposite momenta of their peaks. It then turns out from the solutions given by equation (10)
that the parameter E(t) is not zero just after the two wave packets emerge from the SG magnet
at t = τ , but during the course of a free evolution E(t) saturates to a minimum value, say Es ,
with the saturation time ts depending upon the choices of relevant parameters involved. It is
then logical to consider Es as a measure of the nonidealness. The value of Es varies between
zero and one-half, depending upon the values of the relevant parameters b, τ , m and σ0, so that
Es ≈ 0 represents the operationally ideal situation, whereas Es = 0.5 the fully nonideal one.

Note that |I | is not the measure of operational nonidealness, but the modified observable
probability is concerned with the Es . Now, the modified observable probabilities of finding
the particles with |↑〉z (spin up) in the upper plane and |↓〉z (spin down) in the lower plane
under the nonideal situation are respectively given by

P ni
↑ = (1 − Es)|α|2 P ni

↓ = (1 − Es)|β|2, (13)

where P ni
↑ + P ni

↓ 
= 1. In this case, in the upper (or lower) plane we get a mixture of particles
with both spin states |↑〉z and |↓〉z. Hence the probabilities of finding |↓〉z particles in the
upper plane and |↑〉z particles in the lower plane are Es |β|2 and Es |α|2, respectively. Then
the probabilities of finding both |↑〉z and |↓〉z particles the total probability in the upper plane
and the total probability in the lower plane are respectively given by

P ni
+ = (1 − Es)|α|2 + Es |β|2 P ni

− = (1 − Es)|β|2 + Es |α|2, (14)

where P ni
+ + P ni

− = 1 and Es = 0 gives the result of the ideal measurement. These P ni
+ and

P ni
− constitute the basic observable probabilities in our scheme. To verify equation (14) one

needs to suitably place a subsequent usual ideal SG setup with |I | ≈ 0 (at a sufficiently large
distance where the asymptotic condition Es ≈ 0 is satisfied), which counts all particles in
the upper plane. Then the probabilities of finding |↑〉z and |↓〉z are (1 − Es)|α|2 and Es |β|2,
respectively.

As we have defined above, |I | ≈ 0 implies the formally ideal situation, and Es = 0
the operationally ideal situation. Within the context of the nonideal SG experiment, it is then
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Figure 3. The variation of E(t) with time (in seconds) is shown for the values b = 1×103 G cm−1,

b = 2 × 103 G cm−1 and b = 3 × 103 G cm−1, respectively, with τ = 10−4 s and σ0 = 10−4 cm
while Es � 0 and |I | = 0.9323, 0.7925 and 0.5921 for (b1), (b2) and (b3) respectively [case (ii)].

possible to identify the following distinct situations which highlight the possible connections
between the configuration space orthogonality and the position space distinguishability.

(i) If the situation is operationally ideal (Es ≈ 0), then it must be formally ideal (|I | ≈ 0).
Or in other words, the observation of the position space distinguishability implies that the
two wavefunctions are orthogonal in the configuration space.

(ii) If the situation is formally nonideal (|I | > 0), then it must be operationally nonideal
(Es > 0). This means that the vanishing of |I | is a necessary condition for the ‘ideal
limit’. This is the usual nonideal situation which has been studied by earlier authors
[14, 15] with the aim of reducing the magnitude of nonidealness.

(iii) If the situation is formally ideal (|I | ≈ 0), still it may be operationally nonideal (Es > 0).
This is particularly interesting because it shows that the vanishing of |I | is essentially a
necessary condition for the ‘ideal limit’ but it is not sufficient condition. We probe some
unexplored features of such a nonideal situation in a quantitative way; in particular, we
study the link between the notion of ‘distinguishability’ of apparatus states defined in
terms of the configuration space inner product and the position space overlap between the
wave packets emerging from the SG magnet.

4. Quantitative estimates

We will now show explicitly how the different situations (i), (ii) and (iii) arise due to the
choices of the parameters in the SG experiment. In order to illustrate these features, we
present some numerical estimates for the probabilities P ni

↑ and P ni
↓ , and P ni

+ and P ni
− given in

equations (13) and (14), respectively. The estimation of these probabilities is contingent on the
values of α, β and Es . We first show three representative figures (figures 2–4) corresponding
to situations (i), (ii) and (iii) respectively, which indicate how the parameter E(t) varies with
time and saturates to Es (which is not always zero). The curves in the figures are plotted by
taking various choices of the relevant parameters, such as the degree of inhomogeneity of the
magnetic field b, and the interaction time τ while the initial width of the Gaussian wave packet
σ0 and the mass m of the neutron are fixed.
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Figure 4. The variation of E(t) with time (in sec) is shown for the values b = 2 × 104 G cm−1,

b = 3 × 104 G cm−1 and b = 4 × 104 G cm−1, respectively, with τ = 10−4 s and σ0 = 10−5 cm
while Es > 0 although |I | ≈ 0 [case (iii)].
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Figure 5. The overlap between |ψ+(z, t)|2 and |ψ−(z, t)|2 is plotted for b = 6 × 104 G cm−1,

τ = 5 × 10−4 s and σ0 = 10−5 cm at two different times (a) t = 10−5 s and (b) t = 0.1 s while
|I | ≈ 0 and Es ≈ 0 [case (i)].

Corresponding to the above three cases, we further plot the snapshots of the overlap
between |ψ+(z, t)|2 and |ψ−(z, t)|2 (figures 5–7) for three different sets (Set-I, Set-II and
Set-III) of the relevant parameters τ , b and σ0 at two different times t = 10−5 s and t = 0.1 s.
For Set-I, b = 6 × 104 G cm−1, τ = 5 × 10−4 s and σ0 = 10−5 cm. For Set-II, b = 2 ×
103 G cm−1, τ = 10−4 s and σ0 = 10−4 cm. For Set-III, b = 4×104 G cm−1, τ = 10−4 s and
σ0 = 10−5 cm. These Set-I, Set-II and Set-III correspond to the three situations (i), (ii)
and (iii) respectively as discussed earlier. One can see from figure 7 that there exists a finite
and appreciable overlap between |ψ+(x, t)|2 and |ψ−(x, t)|2 at t = 10−5 s which does not
always vanish at t = 0.1 s (which is much larger than the saturation time ts), although the
inner product is negligibly small, i.e., |I | < 10−100.

We now use the parameters of Set-III to calculate the probabilities for finding spin-up
P ni

↑ and spin-down P ni
↓ particles from equation (13) in the formally ideal but operationally

nonideal situation [case (iii)] and the corresponding probabilities P ni
+ and P ni

− in the upper and
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τ = 10−4 s and σ0 = 10−4 cm at two different times (a) t = 10−5 s, and (b) t = 0.1 s while
|I | > 0 and Es > 0 [case (ii)].

-0.02 -0.01 0 0.01 0.02
0

25

50

75

100

125

-20 -10 0 10 20
0

0.04

0.08

0.12ψ
+

(z,t)ψ (z,t)- | ||
|

2 2

ψ (z,t)(z,t)ψ-
|

| | |
2 2

(a) (b)

+

-----> z -----> z

Figure 7. The overlap between |ψ+(z, t)|2 and |ψ−(z, t)|2 is plotted for b = 4 × 104 G cm−1,

τ = 10−4 s and σ0 = 10−5 cm at two different times (a) t = 10−5 s and (b) t = 0.1 s while |I | ≈ 0
but Es > 0 [case (iii)].

lower planes, respectively from equation (14). We choose four different values for α and β

satisfying |α|2 + |β|2 = 1. The saturation value of Et is obtained to be Es = 0.2478. The
results are presented in table 1.

It is seen from table 1 that when α = β = 1/
√

2 the probability of finding particles
with both |↑〉z and |↓〉z spins in the upper plane is P ni

+ = 0.5000, where the probability of
finding |↑〉z (and |↓〉z) in the upper plane is P ni

↑ = 0.3761 (and P ni
↓ = 0.1239). Note that

in the usual ideal situation (i) the probability of finding particles with |↑〉z in the upper plane
is P i

+ = P i
↑ = 0.5000. To test the result experimentally, a subsequent SG setup which is

ideal in the sense of our situation (i), i.e., |I | ≈ 0 and Es ≈ 0, needs to be suitably placed.
The purpose of the first SG magnet is to separate nonideally the two packets, but there is no
detection of particles involved at this stage. The position of the second SG setup as well as the
screen position must be beyond the corresponding saturation position Ys = vyts . The value of
ts and subsequently Es is different for different parameter choices. For the parameters chosen
in table 1, ts = 0.0012 s and hence the possible position of the second SG setup Ys is beyond
12 cm if one takes vy = 104 cm s−1.
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Figure 8. The variation of the inner product (|I |) and the saturated value of the error integral
(Es) with respect to the inhomogeneous magnetic field (b) are shown for σ0 = 10−4 cm and
τ = 3 × 10−4 s. The maximum values of |I | and Es are 1 and 0.5 respectively when b = 0. Note
that, |I | decreases towards zero more rapidly than Es for increasing b.

Table 1. The quantities P i
↑ and P i

↓ denote the observable probabilities for finding respectively,
the spin-up and spin-down particles corresponding to |↑〉z and |↓〉z of the ideal SG measurement
and P ni

↑ and P ni
↓ are the same for the nonideal case. The quantities P i

+ and P i− denote the
observable probabilities of finding particles in the upper plane and in the lower plane of the ideal
SG measurement and P ni

+ and P ni− are the same for the nonideal case. Note that P i
↑ = P i

+ and

P i
↓ = P i−. In this table the results are presented for four different choices of α and β satisfying

|α|2 + |β|2 = 1 with Es = 0.2478 for the relevant parameters b = 4 × 104 G cm−1, τ = 10−4 s
and σ0 = 10−5 cm while |I | ≈ 0 [case (iii)].

α β P i
↑ = P i

+ P i
↓ = P i− P ni

↑ P ni
↓ P ni

+ P ni−

1/
√

2 1/
√

2 0.5000 0.5000 0.3761 0.3761 0.5000 0.5000
0.8000 0.6000 0.6400 0.3600 0.4814 0.2708 0.5706 0.4294√

3/2 1/2 0.7500 0.2500 0.5642 0.1881 0.6261 0.3739
0.9487 0.3162 0.9000 0.1000 0.6770 0.0752 0.7018 0.2982

Next, we probe the possible connection between the modulous of the inner product (|I |)
and the saturated value of the error integral (Es). In order to study this connection we plot the
variation of |I | and Es with respect to the strength of the inhomogeneous magnetic field (b)
where the initial width of the wave packet is σ0 = 10−4 cm and the interaction time within the
SG magnet is τ = 3 × 10−4 s. When b = 0, the values of |I | and Es are maximum, and then
with the increasing b, both |I | and Es decrease but |I | falls towards zero more rapidly than
Es . The value of Es tends to zero beyond b = 6000 G cm−1, while |I | becomes negligibly
small around b = 3500 G cm−1. It may be noted that in the original SG experiment [5] the
value of b was chosen to be b ≈ 10 000 G cm−1.

Such quantitative estimates pertaining to the curves in figure 8 can be done for other
types of situations such as by varying the initial width of the wave packet or the interaction
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time within the SG magnet which depends upon the initial group velocity of the wave
packet.

5. Conclusions

It needs to be stressed that all the quantitative estimates given in this paper are based on the
measure of the position space overlap between the wave packets emerging from the SG magnet
taken to be the error integral E(t) given by equation (12) which is used to predict the results
of the nonideal situations where the probabilities for finding |↑〉z particles in the lower plane
and for finding |↓〉z particles in the upper plane are both significantly non-vanishing. We find
that the time-independent saturation value of the error integral Es can be non-zero for a wide
range of relevant parameters such as the degree of the inhomogeneous magnetic field and
the interaction time within the SG magnet. Thus, in nonideal situations, we can predict the
observable outcomes, i.e., the probabilities P ni

+ and P ni
− corresponding to both |↑〉z and |↓〉z

particles in the upper and lower planes, respectively. These predictions can be experimentally
verified by placing a screen for detecting the particles beyond the second SG setup (both
formally and operationally ideal) through which those selected particles emerging from the
first SG setup are passed which are confined in the upper plane (z = 0 to z → ∞).

It is thus important to evaluate theoretically in a formally ideal |I | ≈ 0 but operationally
nonideal (Es > 0) situation as to what will be the possible outcomes of the SG experiment
when it is used in its various applications [6–13] mentioned in the beginning. The utility
of such a scheme for quantifying the nonidealness in any given SG setup lies in enabling
the estimation of error involved in inferring the measured spin state (i.e., the error in the
state reconstruction process) from the actual measurement results. That this situation may
arise even in the formally ideal case with operational nonidealness adds further interest to the
estimation of such observable outcomes.

It should, therefore, be instructive to pursue such quantitative studies in terms of other
ways of defining the position space separation between the wave packets emerging from
the SG setup. For example, one may use the von Neumann criterion [1] for defining such
separability in terms of the separation between the peaks of the emerging wave packets and
their respective width at any instant t. In particular, the nature of the connection between
the notion of ‘distinguishability’ of apparatus states defined in terms of the configuration
space inner product and the spatial separation between the wave packets emerging from the
SG magnet shown in the figure 8 will be critically dependent on how the position space
separability is defined.

Furthermore, the analysis of the operational nonidealness is likely to have quantitative
implications in the SG interferometry. For example, one can attempt a nonideal variant
of an interesting example of quantum-state reconstruction [19] involving the analysis of a
synthesis of noncommuting observables of spin-1/2 particles using the SG device with varying
orientations. As indicated by Hradil et al [19], the formalism developed for the analysis of
such examples can be applied to the study of various problems such as the estimation of the
quantum state inside split-beam neutron interferometers. We also note that since the effect
of environment-induced decoherence on the position space overlap of the wave packets has
been studied in an ideal SG setup [20], it should be interesting to investigate such effects in
the types of nonideal SG setups discussed in this paper.

Finally, such quantitative studies of nonideal situations using the SG setup could be
useful for gaining new insights into the quantum theory of nonideal measurement. From
this perspective more studies on the quantum-mechanical modelling of nonideal variants of
different types of measurement situations should be interesting.
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